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The boundary layer flows induced in a stably stratified fluid by two opposite insulated 
boundaries of a tilted square cavity are studied by the Mte difference method. The 
numerical solutions obtained agree reasonably well with the linear theory for high Ray- 
leigh and high Rrandtl number flow at two extreme angles of tilt. Two low Rrandtl 
number flows, 0 = 10-l and lo+‘, are included in the numerical solutions. The compu- 
tational algorithm and its stability properties are discussed in some detail. 

1. INTRODUCTORY REMARKS 

Quon and Blumsack (in preparation) obtained boundary layer solutions for 
the two-dimensional free convection problem described below, and this study has 
been designed to test some of their results. Numerical solutions of seven finite 
difference computations are presented. Some of these solutions are not covered 
by the theory. 

2. THE PROBLEM 

In a stably stratified fluid (Fig. 1) where the tilted boundary is absent the whole 
is in static equilibrium. However, if an impermeable tilted boundary is present, 
the isopycnals bend through diffusive processes to meet the boundary at right 
angles. As a result, the fluid near the boundary is no longer in static equilibrium 
with the rest of the fluid because the static pressure there is less than it is at the 
same level in the interior of the fluid. Consequently, fluid creeps up the boundary 
in spite of the stable stratification. (Similarly, the fluid under a tilted boundary 
creeps down.) The resulting motion is called diffusively induced convection [6, 171. 
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FIG. 1. Motion induced by an impermeable tilted boundary in a stably stratified fluid. 

In both Phillips’ and Wunsch’s studies, the fluid medium is semi-infinite and 
the solutions can be assumed to be independent of the distance along the boundary. 
If the boundary is not infinitely long, but is terminated, say, by two more bound- 
aries perpendicular to it, the solutions change drastically for some angles of tilt 
because of the other boundaries. 

In the present study, a square cavity in the x-z plane as shown in Fig. 2 is 
considered. When it is rotated about the y-axi, the x-axis makes an angle 4 with 
a fixed horizontal axis 7. Consider the cavity to be filled with fluid. In order to 
induce convection diffusively, density variations are created by maintaining one 
side of the cavity at z = 0, at temperature Tl = S&x, 0, d), and the opposite 
side at z = 1, at temperature T, = S&x, 1, $), where S is a positive constant, 
and 5(x, z, 4) is the vertical distance from the 7 axis at the point (x, z) for a given 
angle 4. The other sides of the cavity on x = 0, 1 are insulated, i.e., T, = 0. The 
range of 4 under consideration is 0 < rj < r/2. It can be shown easily that con- 
vection must occur in the above configuration because of the tilted insulated 
boundaries. 

li, 
v 

FIG. 2. The coordinate systems and the orientation of the cavity. 
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For large S, the induced flows are necessarily of boundary layer type. The two 
particular cases (for 4 = 0 and 7r/2) are almost exact analogies to the rotating 
cylinder problems studied by Stewartson [13]. C$ = 0 corresponds to Stewartsons’ 
antisymmetric problem; + = ~r/2 corresponds to his symmetric problem. It has 
long been recognized [2, 161 that in certain circumstances stratif%cation and 
rotation can produce equivalent effects. The present problem provides two specific 
examples. 

3. THE SOLUTIONS 

To clearly present a comparison between numerical results and the boundary 
layer solutions, the analytical procedure and the boundary layer solutions are 
described briefly. 

a. The Equations 

The governing equations are the continuity equation, the Navier-Stokes equa- 
tions, and the temperature equation. As two-dimensional motion is under consid- 
eration, a stream function, Y, can be used instead of the velocity components. 
Using Boussinesq approximation, it follows that 

-(a/at) V2Y + J(V?P, Y) = -vV4Y - clg(aT/&j), (1) 

(@t)T + J(Y, T) = KWT, (2) 

where V2 = @/&12 + a2/8xs2, J(f g) = (fZ1gsZ - g&), and (x1 , xz> stands for 
either (x, z) or (7, 8). 

The boundary conditions are 

T = S-f, 

Y = Y, = 0, z = 0, L, 

T, = Y/ = Y, = 0, x = 0, L, 

(3) 

where L is the height and width of the cavity. 

b. Analytical Procedure 

Let (1) and (2) be nondimensionalized with (K, L, SL) for (Y, X, T), where X 
represents the spatial coordinates. The nondimensional steady state equations are 

(l/a) J(V2Y, Y) = -V4Y - A(aT/ar]), (4) 

J(Y, T) = PT. (5) 
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~7 = V/K is the Prandtl number, and A = agSL4/w is the Rayleigh number. The 
range of nondimensional temperature has become 0 < T < ((1, 1). (4) can be 
further simplified by considering CJ --+ co, and it is demonstrated later that IJ = 7 
can be thus approximated. The boundary conditions in (3) remain unaltered after 
nondimensionalization except those for T at z = 0, 1. The new conditions are 
T = t, where T and e are now nondimensional. 

Because To = e, and I,$ = constant satisfy (4) and (5) and almost all the 
boundary conditions except those for T at x = 0, 1, we let Y = #,, + z,$ and 
T = T,, + 8, where # and 19 are corrections near the boundaries. In order to satisfy 
the boundary conditions, we require that: l3 = 0 at z = 0, 1, 80/8x = -aT,,/ax 
and x = 0, 1; # = -$,, , and iS$/aN = 0 on all boundaries, ajaN being the 
normal derivative. Rewrite (4) and (5) in terms of $ and 0 and linearize (5) to give 

EV*$ = -(cos $0, - sin 4e,), (6) 

v2e = -sin c++& + cos I$&, (7) 

where E = A-l, which is taken to be a small number. In (6) and (7) 
e = x sin + + z cos 4 and q = x cos 4 - z sin 4 have been used. Equations (6) 
and (7) are solved for I/ and 8. 

c. Solutions for 4 = 0 

For C$ ru 0, boundary layer solutions are obtained from either one of the 
following combined equations: cV6($) = -cos2 &a2/ax2)($), provided that 
&I/6 < 1. The superscripts of the following solutions refer to the corresponding 
regions in Fig. 3 near either x = 0 or z = 0, or the corner adjacent to these two 

FIG. 3. The core and regions 1, 2, and 3 for boundary layer analysis. 
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boundaries (note that solution near other boundaries may require a change of 
sign). 

A = tan 4, To = 5, 

#(l) = -tan #~e-~~(cos Xc + sin Xc) + @G/4), 

e(l) = d/4 . (sin +/A) e-Ai cos A[ + O(Giz), 

+2) = q tan 4 $, sinrm ‘+ ?I 7rx X&) + O(E”31~ 

O(2) = $I3 & sin 4 C m cos(2m + 1) 7r.x e-1/20,v . 31’2 
2 

m=o urn. sm 2 umy 

#‘*I = G14(4 tan &A) S(y){1 - e-AL cos Al}, 

@*) = e112(4 sin $/X2) S(y) e-AL{cos Xc + sin A[}, 
#(3) = & + $p + $(2, + +*j, 

773' = To + @l) + ,921 + &W, 

where 
x = (l/2 cos $)1/S, 

u m = (2m + 1)1/3 7913 cosli3 $4, 

(80) 
(84 

(84 

(84 

(c~‘~), (W 

(W 
W 
(80 
W 

p&(y) = e--my [c0s(3~‘~/2) a,y + (l/3”“) sin(31’2/2) omr], 

S(Y) = fl Xm(Y). 
W+O 

The solutions in the corner regions t,U3J and Tt3) in (Bi) and (Bj), satisfy the 
boundary conditions at x = 0, and asymptotically approach the solutions in the 
interior in regions 1 and 2. Since $(*J N O(&14), 0(*) N O(.E~/~), they are of the 
same order as the errors in $u) and W. Hence 

p = t)() + t/P) + tp”’ + O(#), 
273) = To + e(l) + e(2) + 0(&/2). 

The negligibly small quantities #(*) and tic*) are shown in Fig. 14. 

d. Solutions for 4 = 42 

The cases for 4 N 7r/2, are governed by the combined equations: EP(~) = 
-sin2 $(a2/az2)($). Nontrivial solutions are found near the insulated walls and 
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the corners, areas 1 and 3, are shown in Fig. 3. The solutions are valid provided 
that (7r/2 - 4) &i6 Q 1: 

*cl = 0, T, = t, (W-9 
= * (1) 

@l, 

- (2/p)lj4 (z - 4) exp{-2’/“&} + 1/~(2/~)‘/” 

* jl ((-)” sin[am3(z - $)]/m){ePmcl - 2e-“mc1’2 c0s(3~‘~/2) n,cl> 

+ qp-y, (94 

(p/2)l14 exp(-21/45,} - {25/4/15/12} * 2 ((-)” cos[(~,~(z - &)]/am2) 
Wl=l 

. {e-""i' _ 2e-“mw2 cod(3’/“/2) %a51 + (243)i + O($‘? (94 

= 

wherep = l 1f2, u, = (2m#i3, and I& and l2 are of two different scales, 5, = @13x, 
t2 = p-lf4x, which correspond to two different boundary layer thicknesses. 

In area 3, 
f~(~) = C(c,){l - e-y/21’2(cos y/21j2 + sin r/2’/“)}, 
eC3) = p1/221/2 - C(12) - (1 - e-Y/21’2cos y/21/2}, 

where y = p-l/$z, or ~-l/~(l - z) 3 

C((,) = (8p)-l14 exp{ -21i4c2) 

(94 

@f) 

Unlike the case for 4 E 0, #f2) and ~9’~) are not required here on z = 0, 1 in 
area 2, because &, and ?“,, in (9a, b) can satisfy the boundary conditions and the 
above solutions vanish as & and & -+ co. 

e. Solutions for Arbitrary 4 

Approximate solutions for arbitrary 4 are being sought through the method of 
characteristics. Since these solutions are not yet finalized, only numerical solutions 
are discussed. Of particular interest is the case for 4 = ?r/4. 

4. METHOD AND PARAMETERS OF COMPUTATION 

Instead of (4) and (5), the following time-dependent equations for the vorticity, 
<, and temperature T have been solved numerically 

vy = -I;, (10) 
(a/at)5 + J(#, 5) = o~/~V”C + A(sin 4(8/&) - cos #~/ax))T, (11) 

(a/at)T + J($, T) = (l/@) V2T, (12) 
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subject to boundary conditions 

T= 6 tj = & = 0 at z = 0, 1, 

T, = 0, *=&=O at x=0,1. 
(13) 

In the above equations, (KV)~/~ instead of K has been used as the characteristic 
stream function in order to use an existing computer program [9]. Therefore, the 
theoretical stream function will be divided by u1/2 before comparisons with the 
numerical solutions are made. The normalization constants for T and 8 remain 
unchanged. 

The finite difference method used for the computations and the stability analysis 
of the algorithm are discussed below. The integration procedure is to start with 
the condition 5 = $I = 0, T = 5. Equations (lo), (ll), and (12) were integrated in 
cyclic order until steady state. A trial run with the initial conditions # = 5 = T = 0 
did not seem to affect the end result; however, it took much longer to reach steady 
state because of the slow diffusive processes. 

Table I lists the parameters of computation. The choice of parameters is as 
follows: Cases 1, 3, and 5 are to give solutions at 4 N 0, 4 = 7r/4, and $ = 7r/2; 
cases 2 and 4 are to show how the solutions change from either extreme case 
towards 7r/4; cases 6 and 7 are for small Prandtl number flows to enhance the 
nonlinear effect of the system. 

TABLE I 
Parameters of Computation 

Case 4 (deg) A D (=l+) Ku Net 

1 0.1 1.37 x 10’ 7.14 2.24 x 10-a 40 x 40 
2 5.0 1.37 x 10’ 7.14 2.24 x 10-a 40 x 40 
3 45.0 1.37 x 10’ 7.14 2.24 x 10-a 40 x 40 
4 80.0 1.37 x 10’ 7.14 2.24 x 1O-p 40 x 40 
5 90.0 1.37 x 10’ 7.14 2.24 x 1O-d 40X40 
6 90.0 1.37 x 10’ 1.0 x 10-l 2.24 x lo-” 40 x 40 
7 90.0 1.37 x 10’ 1.0 x IO-* 2.24 x lo-” 40X40 

a. The Numerical Algorithm 

Equations (IO), (1 l), and (12) subject to boundary condition (13) are approxi- 
mated by finite differences on constant staggered grids as shown in Fig. 4. 

The central idea of the finite difference scheme used here was first used by 
Lilly [4]. He and his colleagues in NCAR have used similar schemes for numerous 
computations of two-dimensional turbulence in subsequent years, (see 151). The 
present author has also used it extensively to study convection problems in rotating 
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and nonrotating fluids [7,8,9, 111. Although for convection problems of boundary 
layer type as described here, the present scheme has been superceded by a semi- 
implicit algorithm on variable grids [lo]. The former scheme, which is used here, 
has retained its usefulness because of its simplicity. Furthermore, it is almost 
devoid of nonlinear instability. 

FIG. 4. Staggered constant grid used for the computation. 

First consider Eqs. (11) and (12). They can be represented as 

(a/at)F = H (14) 

where 

F=(f), H=(z)=( J(5, 9) + 01W25 + A(sin +(a/az) - cos!f/@@x))T 
J(T, 4) + (1/u1j2) V2T ) 

For compact presentation, we shall use the familiar contracted notations: 

G(x, z; t) = G(j dx, k dz; v dt) = G;,lc , 

(StG);>‘1’2) = (l/ot)(G;:,l - G;,J, 

(WX,, = UIW(G+(II~L~ - G;-w2d 

G&G);,, = (~/~(G,~+(I,B) - ‘%-41/2~L 

@ = (G+(1/2) + G-w2,YZ 

(15) 

a being v, j, or k. 
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The finite difference representations for (14) are the following 

(&F)‘+V = #H” - $H’-l. (16) 

(16) is centrally ditferenced in time at t = (V + 4) dt, accurate to O(LI~)~. It is 
a very simple algorithm to use because one can compute H’ and use it in (16) at 
one time level; then replace H”-l in storage for use in the next time step. Equa- 
tion (16) is the simplest form1 of Adam-Bashforth representation for (14), which 
is well known for numerical solutions of ordinary differential equations [3]. 

Arakawa’s quadratic conserving scheme [l] is used for the Jacobian in H. 
Specifically the finite difference representation at time level v is: 

H;,j,k = (l/3) t J,(L #)I,k + u1”V2&,k + &sin @,TJ,, - cos @Zy,“), (17) 
LX==1 

where 

and 

The subscripts j, k, and the superscript v have been suppressed. Note that 
although the Jacobian representations J1 , J2, and J3 in (19) and (20) are identical in 
differential form, they utilize different combinations of grid points in finite 
difference form. The spatial differences are central differences about 5 in (19) and 
about Tin (20). 

Square nets of M x M points are used, i.e., 1 <cj G M, 1 < k < M. While 
the # and 5 fields span over the whole range of M x M points, the T-field occupies 
only M x (M - 1) points, i.e., 1 < j < M, 1 < k < (M - 1). The boundary 
conditions are approximated as follows 

T,,, = &x, 0; q%) = (j - 1) dx sin I#, at z = 0, 
Tj,N--l = 5(x, 1; 4) = (j - 1) dx sin rj + cos +, at z=l, 

TM = T2.k: 3 TM,, = Taw--l,k 3 for all k, 

l The next level of approximation by Adam-Bashforth expansion is (8tF)v+c11s’ = (I/12) 
(23H” - 16H”-1 + 5H”-*). 
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$ = 0 on the outermost 2 layers of points in the net. 5 on the outermost layers 
are not used. 1 on the second outermost layers of points, c2 are obtained from 

where & is the nearest nonzero neighbour of c2 , and h is either Ax or AZ. The 
four corner points, c2 , are the average of their two nearest neighbors defined 
above. This rather crude approximation of the boundary conditions for t,L and 5 
has yielded some reasonably accurate results. 

When the mesh points are sufficiently dense, the error in # can be kept small. 
Obviously the error in 4 depends on the configuration of the flow field, because 
this approximation not only shifts the boundary points one half grid points 
inward, amounting to adding or subtracting some values from # at these points, 
it also assumes a#/aA = 0 at half a grid distance inside the physical boundaries, 
a/ax being in the direction along the boundaries. 

In the context of our problem this latter assumption is in line with the solutions 
of case 1, but may produce considerable error for case 5 because $ for that case 
varies along the boundaries. It is expected that the errors are contained when h 
is small. 

b. Stability Property 

The full set of Eqs. (16) to (20) are too complicated to analyze for stability 
criteria. Instead, a set of linear equations appropriate to the problem is analyzed. 
Consider 

--6,V2# = -(u)‘12 V4# + A sin c,&T - A cos @,Txz, (21) 

&T = (l/&3 V2T - sin @,$ + cos $S,p, (22) 

where V2 = (SZ2 + aZ2), V4 = (SE2 + SZ2)2. Expanding t,/~ and T at grid point 
(j, k) by Fourier series yields 

exp{i(jl + km) AT), with h = dx = AZ, i = (-1)li2. 

The following identities are used for the spatial operators in (21) and (22): 

(Sz2 + Sz2) = -(4/h2)(sin2 Zhn/2 + sin2 mhn/2), 
6,(-)zz = i(l/h) cos mhn/2 sin Zhn, 

8, = i(2/h) sin mhrr/2. 

Thus, for arbitrary Z, m within the range 1 < l, m < l/h, 

WQ, = -(W2 E~QL + WV4 TL, , 
Wt, = -(d~~/~) TM, - $h, , 

(23) 

(24) 



INDUCED BOUNDARY LAYERS 

where 
a? = (4/h2)(sin2 Ihrr/2 + sin2 mhn/2), 
/3 = (l/h)(2 sin 4 sin mhz-12 - cos q5 cos mhn/2 sin Ihn). 

Applying the Adam-Bashforth scheme on (24) yields 

woM~l - &rJ 

469 

(25) 

= -MW #'I, - U/2) &?3 - bbW312) TLn - (l/2) TL'), 

which can be written as the following with lm on # and T dropped 

F’il = S$,F’ 
(F”+l)’ = (#“+l: @‘, T”+l, T”), 

where p indicates the transpose. S,, is the amplification matrix 

&?n = 

--iAt AB 
2a! 

1 0 0 0 

-iAt?.!? B 3ci 
2 idt- 2 1 -At- 20112 At& 

\ 0 0 1 0 i 

. (27) 

For stability we require 

where hl, is an eigenvalue of S1, , and X,*, is its complex conjugate. 
For practical purposes, it is not necessary to study the general property of 

matrix (27). To simplify the analysis, the diffusion limit of (27) is examined by 
setting p = 0. The eigenvalues of (27) for ,8 = 0 are the roots of the following 
characteristic equation: 

((1 - 8% - w-4 - &Ml - #a2 - 4(--h) - +72) = 0, 

where a, = AtoxG, a2 = AtalcW. The four roots are 

Ai* = g( 1 - $aJ f ${(l - #a,)2 + 2&l/2, i = 1, or 2. 

Clearly all Xi are real for a, > 0, and 

1 A, 1 < 1 if ae < 1. 
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From (25a), max 01 = S/V, hence ai < 1 imposes a limit on d t as 

At/h2 < (1/80l/~) for 021, 
At/h2 < 01i2/8 for a<l. 

Wa, b> 

These conditions for At are not much more stringent than other explicit schemes 
accurate to O(At2) (see [12, p. 1891). For h = l/38 as used in our computations, 
(28a, b) give the following numerical upper limits for At 

At < 3.24 x 1O-5 for u = 7.14, 
At < 2.73 x 1O-6 for 0 = 10-3. 

Figure 5 plots (1) the complete set of four eigenvalues of (27) for u = 7.14, 
lh = mh = 1 and 4 = rr/2 to give maximum values for cx and /I. All eigenvalues 
are real and three of them have absolute values less than unity for At < lo-* as 
shown. The fourth, X, , is equal to -1 at At N 3.24 x 10-5, the same as the 
diffusion limit calculated above. This is not unexpected because if St, is partitioned 
such that $, = (: z), where the block elements are 2 x 2 matrices, S, has much 
smaller elements than the other for large A and M. Hence the effectual eigenvalues 

I.Oy--L,, ’ 1 

t I 

\ ---- -- 

'. 

x,,G-•7.14 
--- 

---- X,,a=7.14 
-f ------ 

x 'I 
0 

-1.0 0 I 2 3 4 5 6 7 8 9 loxlo- 
At-, 

FIG. 5. Eigenvalues of matrix (27) for At < 1O-4 for different values of B. For D = 7.14, 
all four eigenvalues are plotted as functions of At. Curves 1 to 4 represent the eigenvalues of 
u = 1O-S, 10-8, 10-l, and 1. All the three other eigenvalues are less than unity and are not shown. 
Note that curve 1 also represents the eigenvalue for o = 108 (with the largest modulus). This is 
expected if 0 deviates much from unity, because the dominant diagonal term contains ul/* for (I 
large, and l/u*/* for (r small. 
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of S’, are those of S, and s, . (2) A, for (T = 1.0,10-l, 1O-2, IO-*, and 10S. The rest of 
the eigenvalues have absolute value less than unity for At < 1O-4 investigated. All 
eigenvalues are real. It is worth noting that except for (T = 1.0, the maximum 
At for all other values of CJ are very close to the diffusion limit given by (28). 
Even for u = 1, the diffusion limit of 8.66 x 1O-5 has been lowered by only 18% 
to 7.07 x 1O-6. The maximum dt is at ~7 = 1.0 as indicated by (28). 

It is also interesting to note that even for case 7, whose velocity fields are very 
strong, the limit for At is still the diffusion limit. The nondimensional maximum U 
for case 7 is ~10s. The advection limit would be dt < (h/4U) = 6.58 x 10-6, 
which is still less stringent than the diffusion limit. It is clear that for the type of 
problem studied here some kind of semi-implicit treatment of the diffusive term 
can be used to great advantage as already demonstrated in [lo]. 

Figure 6 depicts the results of two numerical experiments using the full equations 
to determine the maximum At that can be used for a given set of parameters. The 
ordinate represents the number of cycles a computation can attain for a At before 

IO’ I 
0 5 IOX 10-e 

At (u=lo”l --w 

FIG. 6. Results of direct numerical experiments with Eqs. (26) and (30). The two solid curves 
show the cycle numbers at which the computations “blew up.” Note these cycle numbers are only 
rough indications for any given At. They both approach asymptotic values close to the diffusion 
limits indicated by the vertical lines. 
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the computation “blows up.” These crude experiments give amazingly good 
estimates. Note that for both cases, the theoretical diffusion limits almost coincide 
with the vertical asymptotes of the experimental curves. 

c. Solving the Poisson’s Equation 

In addition to (11) and (12), (10) must be solved at each time step. Very efficient 
direct and iterative methods are available for its solution. Here we have used 
the AD1 method [15, p. 209, and references]. Instead of a set of acceleration 
parameters usually, derived from a min-max problem for ADI, we used the exact 
eigenvalues of the iterative matrices. Perhaps eigenvalues are not the most efficient 
acceleration parameters, but they are very simple to use. We shall describe what 
they are and what the results are by using them as acceleration parameters. Equation 
(10) can be written in a 5-point finite difference form as follows: 

where the maximum of Rj,r , the residue, can be prescribed. The procedure is to 
separate one complete iteration into two consecutive steps as follows: 

~~++l’y) - 23L$‘2) + #;$y’ - An&y) 

= -(1Gh+1 - Wl”,le + Kle-1 + b,V,J - h25;,, , (304 

Equation (30a) can be solved for all k and then (30b) can be solved for all j by 
Gaussian elimination. For each v, we need to iterate (30) n times for n as large as 
necessary for (29) to be satisfied. X, are the acceleration parameters for the 
nth iteration. If we represent the error after each semi-iteration by 
E$@“’ exp{i(jl + km) h7r} and ErL’ exp{i(jl + km) hr}, they satisfy (30) 
without the terms containing 5y. The error equations can be written as 

E n+1 
zm t 1 zz 

E n+h/z) 
-(A + x,z)-1 (B - &I) (E;;'2)), 

zm 

where 

(31) 
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I, m are independent wave numbers and 1 < I, m < M. A4 being the total number 
of grid intervals in a unit square, or Mh = 1. (A + X,Z)-l exists if (-An) is not 
an eigenvalue of A. Theoretically if we choose An equal to either one of the two 
eigenvalues of B, i.e., A, = a,, , or b, , 1 < n < M, we remove all error after M 
complete iterations. For large M, this procedure is clearly inefficient. In practice, 

- ” 
w 18x’o-” w” 
r 

, I I I I I I t II 

0 2 4 6 8 IO -12 14 16 I8 
MESH POINTS 

FlG. 7. Numerical experiments with the Poisson’s equation (30). Numbers on the left-hand 
side indicate the missing wave number used in computing the acceleration parameters. Note 
that the scales of the residue on the right-hand side are different by many orders of magnitude 
from top to bottom. 
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however, we need only to iterate with the 3 or 4 lowest wave numbers each, even 
for M as large as 40. 

In order to see whether or not X, would remove the nth component of the error, 
a series of numerical experiments are performed as follows. A random field 5 
with magnitude O(1) is introduced into a unit square, and (30) is solved for # 
with (M - 1) iterations. Progressively one wave number was left out in the set of 
parameters used: the first run uses az , a3 , a4 ,..., a, in (M - 1) iterations; the 
second run used a, , a, , a4 ,..., a,,., , etc. In Figure 7, the residues along the center 
line at z = $ for M = 18 are plotted. From top to bottom, the runs are for 
consecutive missing wave numbers. It is clear that the residues correspond to the 
wave number excluded in the acceleration parameters. Note that 5 - O(l), 
h2 N (1O-s), R - 0(10-11) would give A$/$ - ~J(10-~), which is about the 
machine accuracy. 

In computing Z/ in consecutive time steps, one additional advantage is to use # 
in the previous time step as the initial condition. Experience has indicated that 
using the first 3 or 4 wave numbers gives reasonably accurate results. 

5. NUMERICAL RESULTS 

For high Rayleigh number flows (A + co), the nondimensional boundary 
layer thicknesses range from &* to #. To produce boundary layer flow, &* must 
be sufficiently small for separation and cl/* must be sufficiently large for grid 
resolution. For A = 1.37 x lo’, we have &* = 1.28 x 10-l and $I4 = 1.64 x 1O-2. 
In a unit square, the boundary layers are separated widely enough, but 40 x 40 
nets of constant grid interval (A = l/38 = 2.63 x 10-2), though apparently 
insufficiently dense to give good resolution, gave results that agree reasonably 
well with the theory. 

a. High Rayleigh Number, High Prandtl Number Flows 

Figure 8 depicts the four basic fields, T, 8, Z$ and 5, of cases 1 to 5. The true 
vertical is opposite to the gravitational vector shown at the lower left corner of 
Row d. In all cases the interior isotherms in Row a indicate the true horizontal. 

Row a is the total temperature field. Row b is obtained from the total tempera- 
ture field by subtracting To = .$ from it. Hence Row b represents the boundary 
layer field 0. 

i. The Cases with 4 ~10. The 9 and $ contours of case 1 in Fig. 8 give a good 
illustration of its boundary layer formation. The thermal boundary layer is 
stronger near the insulated walls at x = 0, 1 than that near the heated walls at 
z = 0, 1. The theory (8d and 8f) predicts their relative magnitudes to be O(&*) 
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and 0(G13), and their width to be O(#) and O(#). According to (Sd) and (8f), 
the G14 layer, (e(l) at x = 0, l), is independent of z, while the &6 layer ((P at 
z = 0, l), is antisymmetric about x = 3. Although W is stronger than P2), fP2) 
is a broader layer, and hence is more likely to extend further into the interior 
than e(l). 

According to (8~) and (Se), #(l), the # layer near x = 0, 1, is independent of z, 
while #f2), the &I6 layer, should bulge toward the interior near x = 8. Again 
because $c2) is a broader layer than # (I), it is more likely that #c2) not #(l) influences 
the interior. Figure 9a shows the details of P2) and its extension into the interior 
while Fig. 9c shows the stream function in the interior, which can be interpreted 
as the extension from z,U”). 

(a). (bl OXlO4 

i 

FIG. 9. Detailed contours of the interior 0 and $ for cases 1 and 2. The stronger boundary 
layer values have been blocked off so that the details of the weak interior distribution can be 
contoured. 

Case 2 in Fig. 8 shows the changes in the various fields when the angle of tilt 
is increased from 0.1” to 5”. The overall features are very similar to those for 
case 1. The changes are visible, however; Figs. 9b and d show the interior 8 and # 
of case 2. 0 is no longer antisymmetric, and 4 is no longer symmetric about x = 4. 
For the theory to be valid, @l/8 < 1 must hold. For case 1, $&I6 = 0.027, 
while for case 2, I+-~/~ = 1.35. 
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ii. Cases with 4 N 7r/2. For 4 = 1~12, the theory produces double boundary 
layers near the insulated walls at x = 0, 1. The inner layer has a thickness of 
OQ.L~/~), and the outer layer of O(JL~/~), and these layers correspond respectively 
to the two parts containing 5, (= zp-‘/“) and & (= zp-‘14) in (9c) and (9d). 

The outer thermal layer is independent of z while the inner layer has a maximum 
(or minimum) at z = $ as shown in Eq. (9d). Both the inner and outer layer of 
the stream function #cl) in (9c) are antisymmetric about z = +. The four-cell 
formation as shown in Fig. 8c of case 5 is contained in (9c) and (Se). Equations (9e) 
and (f) both represent a thinner end layer that satisfy the boundary conditions at 
z = 0, 1 and match the main boundary layers. 

Case 4 is for 4 = 80”. The most obvious difference between cases 4 and 5 is 
that 0 and /J of case 4 are no longer symmetric or antisymmetric about z = 4. 
The @ills at the pivoting corner and the cell diagonally across become more 
dominant. As the angle of tilt is reduced from 90”, the induced convection must 
go up along the insulated boundary at x = 0 and down at x = 1 as established 
in Section 2. This explains why two cells can dominate the others as shown for 
case 4 because they have the preferred circulation. It is difficult, however, to 
extrapolate these solutions to explain the flow in case 3 which we shall consider 
next. 

iii. Case with 4 N n/4. Case 3 is for 4 z 7r/4. The flow in this case is difficult 
to analyze. There are four boundary layers seemingly of equal strength and equal 
width along all four boundaries. Unlike either case 1 or case 5 whose interiors 
can be considered motionless, the leakage from the boundary layers contribute 
higher order flows in the interior that are not entirely along the isotherms. The 
fl diagram shows that 8 is also nonzero in the interior, but like T, , B is not a 
function of 7 and hence cannot generate any motion. Thus, we must conclude 
that the interior is diffusive as well as conductive. This case has not yet been 
successfully analyzed. 

b. High Rayleigh Number, Low Prandtl Number Flow 

The effect of the advective term in (4) can become negligible as u -+ co. It has 
been shown in earlier studies of convection in a cavity [9] that even for CT - O(l), 
the momentum equation can be linearized. Two cases with 0 = 10-l, case 6, 
and 0 = 10-3, case 7, are presented and the effect of small cr is examined. 

Figure 10 depicts the four basic fields of cases 6 and 7. Both cases are for 
X# = 7r/2. The contoured fields of cases 5 and 6 appear similar, but the magnitude 
of 0 has increased by 50 % and the maxima of $ has increased by 90 % for case 6. 
Though u changes, all other characteristic values remain constant for cases 5, 6, 
and 7. Therefore, it is meaningful to compare the nondimensional field values 
(see Table I). 
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CASE 6 

(b)B 

21 (O,I) CASE 7 

FIG. 10. Contours of cases 6 and 7 (see caption of Fig. 4 for explanation). 

Case 7, with D = 10-3, is very different. Figure 10 shows that instead of boundary 
layer cells, the motion occupies the whole cavity. The maximum 8 has increased 
to 0.23 in comparison with the overall imposed temperature of unity. Nonlinearity 
has dominated the flow. Figure 11 shows the temporal development of various 
terms in (11) at a point near the bottom insulated boundary. Note that case 7 
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cannot attain steady state. The final dynamical balance is between aC/at and 
J(#, 0. The vorticity field shown in Fig. 10 is chaotic and looks more like that 
of a turbulent than laminar flow. 

6- 

5- 

5 

2 3 
4- 

'I 3 

3- 

I I I I11111 1 I I111111 
IO' 104 

CYCLES OF COMPUTATIONS 

FIG. 11. Temporal development of Eq. (11) for case 7, (r = 10e8 at the point x = 0.145, 
z = 0.224 (upper four curves). The lower three curves are for the vorticity at three 
adjacent points, z = 0.224, x = 0.039, 0.090, and 0.145, which are consecutively numbered 
1, 2, and 3. 

Figure 12 shows the three-dimensional plots of Fig. 10. Of particular interest 
are the 8 fields. For case 7, the center of t? starts to deform. While this kind of 
plot does not add any dynamical understanding, it provides a new dimension 
that may reveal small but interesting features of the fields one could otherwise 
overlook. 
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6. COMPARISON BETWEEN THEDRY AND COMPUTATION 

i. Case 1, 4 = 0.10” 

The specific solutions to be compared with the computations are (8). These 
solutions are relatively easy to compare graphically. 

Figure 13 shows the structure of the two fields across the two layers on the 
boundaries near x = 0, (Figs. 13a and b) and near z = 0 (Figs. 13c and d). The 
functional forms of the analytical and finite difference solutions are very similar. 
There is, however, a difference of about 8 % between the theory and the computa- 
tion in both the temperature and the stream function. There are two sources for 
the discrepancy: (1) errors from the finite difference approximation, and (2) errors 
allowed in the analytical solutions, which are O(c114). The precise magnitude 
cannot be obtained for either error. 

LINE I -THEORY LINE I -THEORY 
LINE 2 -COMPUTATION LINE 2 -COMPUTATION 

-+*-+-a t t +* * t + t +*-+ c 
I x- ( 

X=025 

I 2.5 

z=o500 
LINE I-THEORY 
LINE Z-COMPUTATION 

x- I 
X=0.25 

FIG. 13. Comparison between theory, line 1, and computation, line 2 for case 1, 4 = 0.1’. 
Line 1 in (a) is @I) -I- &, and line 1 in (c) is fit*) -+ $,, in Eq. (8). Line 1 in (c) represents 8”) and 
line 1 in (d) represents P in Eq. (8). Note that the theoretical stream function, #, has been 
divided by u1’a to compare with the fmite difference solutions lines 2. 

Figures 14a and b show the corner solutions at z = 0.105. Note that the total 
!P and T in the region are !P = $I,, + z/P) + qV2) + $(*), and T = T,, + e(l) + 
W + of*). The contributions of both #(*) and (I(*) are small as seen in Figs. 14a 
and b (lines 3). The composite solutions compare with the inite difference result 
reasonably well. 

581/22/4-6 
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t = 0.105 
IO LINES 4,5 -THEORY 

/-4 LINE 6 - COMPUTATION 

-5 

f 

FIG. 14. Comparison of solutions at the comer (0,O) for case 1. (a) Line 1 is #(lb, line 2 is 
IJ(~~, line 3 is $(*I in Eq. (8g). Near x = 0, the solution is line 5 which represents (8i). It asymp- 
totically approaches line 4 which represents SIP1 + yk, as x increases. (b) Line 1 is W, line 2 is 
19, line 3 is 0’*) in Eq. (8). Equation (8j) is represented by line 4. Note that line 5 in (b) represents 
0 = T - e from the computation. 

ii. Case 5, 4 = n/2 

The solutions to be compared are (9). Equations (SC) and (9d) are graphically 
represented at two values of z in Fig. 15, (z = 0.105 and 0.237). Lines 4 represent 
the finite difference solution and lines 1 represent the composite solutions (SC) 
and (9d). Lines 3 are the outer layer and lines 2 represent the inner layer. Note 
that the origin for lines 2 in Figs. 15a and c has been raised for compact presenta- 
tion. Although the functional forms of lines 1 and 4 agree in general, the magnitude 
in Fig. 1% is underestimated by at least 20 %. The correction temperature 8 agrees 
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very well between the theory and computation at x = 0 and asymptotically goes 
to zero away from the boundary. 

One interesting feature the theory produces in Fig. 15b is the S shape of line 1, 
which is more exaggerated than line 4, the finite difference solution. This S shape 
is a direct contribution of the inner layer represented by line 2. 

2 (a),-, 
t = 0.105 
LINE I -THEORY 
LINE 4-COMPUTATION 

(b) 

t=0.237 
LINE I -THEORY LINE I - THEORY 
LINE 4 - COMPUTATION LINE 4-COMPUTATION 

FIG. 15. Comparison of # and 0 at two levels of z for case 5, 0 = 90”. (a, c): Line 2 is the 
irmer layer and line 3 is the outer layer in Eq. (9c) for z = 0.105 and z = 0.237. Note that the 
origin of line 2 has been raised for compact presentation by the amount of line 3 at x = 0. Line 1 
is the composite solution (SC). (b, d): Line 3 is the outer layer and line 2 is the inner layer of 0. 
Line 1 is the composite solution Eq. (9d). In (a) and (c) the theoretical stream function 4 has been 
divided by 0~1~ for comparison. 

Figure 16 compares the solutions from Eqs. (SC) to (9f) at two values of x from 
z = 0 to +. In Figs. 16a and c, lines 3 represent the outer layer contribution which is 
a linear function of 2 at given X, or C2 , and lines 1 are the composite solutions. 
Note that although the major contribution to the composite solution is from the 
outer layer (line 3) as expected, the contributions from the inner layer are not 
insignificant because they subtract from line 3 as in Fig. 16a, or add to it, as in 
Fig. 16c, to form the composite solution. Comparing lines 1 and 4 in Figs. 16a 
and c the two solutions agree pretty well only after the inner solutions have been 
subtracted and added. Near the boundary at z = 0, the proper solution is #(3), 
Eq. (9e), which is graphically represented as lines 2 in Figs. 16a and c. #c3) matches 
onto line 1 asymptotically at z = 0. Any connection between lines 1 and 2 can 
only be constructed heuristically (see [14n. 
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Similar interpretation also applies to Fig. 16b and d which graphically represent 
solutions (9d) and (9f). Note that in (9d), the outer layer contribution is a constant 
at given x (or &J. The contributions from the inner layer (lines 3) are again small 
but not insignificant to the functional shape of the composite solutions (lines 1). 
Again lines 1 and 4 are comparable in regions away from z = 0. Near the boundary 
at z = 0, W in (9f), given as line 2 in Figs. 16b and d, should be compared with 
lines 4. Lines 2 show that e(3) asymptotically match onto IP at z = 0. Again the 
overall agreement between theory and computation is good. 

1 (a) 
X=0276 x=0395 
LINES I,Z-THEORY 

~ 
LINES I,Z-THEORY I 

LINE 4 -COMPUTATION LINE 4 -COMPUTATIOIL ~ 

N 
Q 

G 
LINES I,2-THEORY LINES I,2-THEORY 
LINE 4 -COMPUTATION LINE 4 -COMPUTATION 

FIG. 16. Comparison of # and 0 at two levels of x for case 5. (a, c): Line 3 represents the outer 
layer which is linear in z at given x, and line 1 is the composite solution, Eq. (SC). Near z = 0, 
the solution is Eq. (Se), represented by line 2 which matches asymptotically onto line 1 at z = 0. 
Line 4 is the finite difference solution. (b, d): Line 1 is the composite solution equation (9d) and 
line 2 represents solution (9f) which matches onto the outer solution. Lines 3 in Fig. 16(b) and 
(d) represent the inner solution which is zdependent, and whose magnitude relative to the outer 
solution diminishes as c (or z) increases. 

ACKNOWLEDGMENT 

The author wishes to thank Dr. S. Blumsack for rewarding discussions and Mr. C. M. Croft 
for doing the three-dimensional plots. All computations were done on the CDC 3150 in Bedford 
Institute of Oceanography. 



INDUCED BOUNDARY LAYERS 485 

REFERENCES 

1. A. hAKAWA, J. Computational Phys. 1 (1966), 119. 
2. H. P. GREENSPAN, “The Theory of Rotating Fluids,” Cambridge University Press, London/ 

New York, 1968. 
3. H. LEVY AND E. A. BAGGO-IT, “Numerical Solutions of Differential Equations,” Dover, 

New York, 1950. 
4. D. K. LILLY, Monthly Weather Rev. 93 (1965), 11. 
5. D. K. LILLY, Geophys. FIuid Dyn. 3 (1972), 289. 
6. 0. M. PHILLIPS, Deep Sea Res. 17 (1970), 435. 
7. C. QUON, Ph. D. Thesis, Cambridge University, 1967. 
8. C. QUON, Phys. Fluids Suppl. II, 12 (1969), II 214. 
9. C. QUON, Phys. Fluids 15 (1972), 12. 

10. C. QUON, J. Computational Phys. 20 (1976), 442. 
11. C. QUON, Tel& in press. 
12. R. D. RICHTMYER AND K. W. MORTON, “Difference Methods for Initial-Value Problems,” 

Interscience, New York, 1967. 
13. K. STEWARTSON, J. Fluid Mech. 3 (1957), 17. 
14. M. VAN DYKE, “Perturbation Methods in Fluid Mechanics,” Academic Press, New York/ 

London, 1964. 
15. R. S. VARGA, “Matrix Iterative Analysis,” PrenticuHall, Englewood Cliffs, N.J., 1962. 
16. G. VERONIS, Ann. Rev. FIuid Mech. 2 (1970), 37. 
17. C. WUNSCH, Deep Sea Res. 17 (1970), 293. 


